If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+98=21n
We move all terms to the left:
n^2+98-(21n)=0
a = 1; b = -21; c = +98;
Δ = b2-4ac
Δ = -212-4·1·98
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-7}{2*1}=\frac{14}{2} =7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+7}{2*1}=\frac{28}{2} =14 $
| 10.1x+62.89=-9.9x+61.65 | | 4^-x=1256 | | x^2+26x+84=0 | | 8.1x+73.99=11.9+73.51 | | 19(x-2x)=11 | | 13x−5x+24=0 | | 3(0.15-0.2+0.25p)=0.15-0.75p | | 1(x)=20/7(x-5)2+5 | | 29+x+15=133 | | 3x-7+2x-8=3x+2x-7-8=5x-15 | | 9^x+9^x-1=30 | | 7p-4=3p-36 | | 9m+11=8m+7= | | 9=24-y | | 2x/3-3/2=1/2 | | (x+4)x(x)x(x/3)=351 | | (3x+8)(x-3)=0 | | 0+2x=-1 | | 6+2x=-1 | | (x+4)(x)(x/3)=351 | | 5t-6=4t=2 | | 5f-4=38-2f | | 10/24=x/40 | | 53p=10 | | 2(x-1)+6(x-3)=3(x-5) | | x=1/2x=3 | | 2×4x-5-x=6+4x-(2x+3) | | 5(6z-1)-4(z+9)=14(z+1) | | 12x+45=6x+90 | | x2+32x+207=0 | | x=3/4x5 | | x=9x=-2 |